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Abstract: The available information of linear constraint in linear dynamic systems, which
is often unexplored in previous works, is taken advantage of to improve the accuracy of
the parameter estimation, particularly in the presence of randomly missing measurements.
Specifically, a Kalman filter-based identification for systems without constraint but with the
randomly missing measurements is first introduced. Then the result is extended to systems
with linear constraint under normal conditions. By doing so we show that the accuracy of the
estimation is improved by taking the constraint into account, both theoretically and numerically.
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1. INTRODUCTION

Dynamic models are often taken for granted in the de-
velopment of any control methodologies. To obtain these
models in reality, however, requires an essential step called
“system identification” which tries to build the model from
measured data. System identification has been the focus
of the control community for more than half a century
since its first introduction by Zadeh in 1956 , and it is now
not surprising to see that system identification has been a
very general topic, with di↵erent techniques proposed for
di↵erent models to be identified: linear, nonlinear, hybrid,
etc. Two main avenues can be seen in the development of
system identification. One is the realization approach, i.e.,
the realization of linear state-space models from impulse
responses, Ho and Kalman (1966), leading to so-called
subspace methods, e.g. Larimore (1983), Van Overschee
and DeMoor (1996). The other avenue is the prediction-
error approach, more in line with statistical time-series
analysis and econometrics. For more information on this
approach please refer to Astrom and Bohlin (1965).

System identification requires the observed input-output
data to do its job. However, this information is often
unobservable or missing in the practical environment. For
example, in networked control systems, the measurements
often randomly miss due to the imperfect communication
channels. In dual-rate systems, the output data is often
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missing due to the intersample output (Ding and Chen
(2005)). Therefore, this poses a challenge of identifying
the system with missing measured data.

To meet this challenge, a frequency domain solution is pro-
posed in Pintelon and Schoukens (2000) which treats all
missing measurements as parameters, potentially leading
to a large amount of parameters to be identified. Yang
Shi and Huazhen Fang (2010) show a Kalman filter-based
identification for systems with randomly missing measure-
ments in a network environment. Di↵erent from these ex-
isting methods, in this paper, we first model the input and
output missing as two separate Bernoulli processes, then
design a missing output estimation and finally develop a
recursive algorithm for parameter estimation by modifying
the Kalman filter-based algorithm. Compared with Yang
Shi and Huazhen Fang, by using the information in the
parameter estimation process, the accuracy of parameter
estimation is improved (Mahata Kaushik (2004)).

The rest of the paper is organised as follows. The problem
is formulated in Section 2, which also includes the output
estimator and the recursive algorithm for parameter esti-
mation by modifying the Kalman filter-based algorithm
in [10]. In Section 3, we derive the constraint of the
system and give the recursive algorithm for parameter
estimation by modifying the constraint of Kalman filter-
based algorithm. In Section 4, convergence properties of
the proposed algorithms are analysed. In Section 5, an
illustrative example is given to show the e↵ectiveness of
the method proposed. Section 6 concludes the paper.
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Fig. 1. the NCSs scenario

2. PROBLEM FORMULATION

Similar to [10], consider the following system as illustrated
in Fig. 1,

x(t) = Pzuc(t) =
�(z)

↵(z)
uc(t) (1)

yc(t) = x(t) + v(t) (2)

uc(t) = ⌧tu(t) (3)

y(t) = �tyc(t) (4)

where Pz is the discretization of the continuous plant P
and is given as

Pz =
�0 + �1z

�1 + �2z
�2 + · · ·+ �nz

�n�

1 + ↵1z�1 + · · ·+ ↵nz�n↵
(5)

The polynomial orders n↵ and n� are assumed to be
known. Bernoulli random variables ⌧t and �t are intro-
duced to characterise the data missing pattern. The prob-
ability distributions of ⌧t and �t are defined as:

P (⌧t) =

⇢
⌧, ⌧t = 1

1� ⌧, ⌧t = 0

P (�t) =

⇢
�t, �t = 1

1� �t, �t = 0

The output estimation for (1–4) is taken as follows,

zt = y(t) + (1� �t)ŷ, ŷ = 'T
t ✓̂t, y(t) = xt + vt (6)

The Kalman filter-based identification algorithm in [10] is
as follow,

✓̂t+1 = ✓̂t +Kt+1(zt � 'T
t ŷ) (7)

Kt+1 =
Pt't

qt + 'T
t Pt't

(8)

Pt+1 = Pt � �t
Pt't'

T
t Pt

qt + 'T
t Pt't

(9)

xt = 'T
t ✓̂t+1 (10)

where

'T
t = [�xt�1 · · ·� xt�n↵⌧tut · · · ⌧t�n�ut�n� ]

T

✓̂t = [↵̂1↵̂2 · · · ↵̂n↵ �̂0 �̂1 · · · �̂n� ]

3. KALMAN FILTER-BASED WITH CONSTRAINT
ALGORITHM

3.1 Derive the constraint with system

Assumed P is descirbed as follow:

y(n) = an�1y
(n�1) + an�2y

(n�2) + · · ·+ a0y

+ b0u+ b1u
(1) + · · ·+ bnu

(n) (11)

Discretize P with �t, denoted Wz as (12), then

Wz =
�0 + �1z

�1 + �2z
�2 + · · ·+ �nz

�n

1� ↵1z�1 � · · ·� ↵nz�n
(12)

Theorem 1. For �t ! 0 and the parameter of a0 and b0
being nonzero and bounded, then

nX

i=1

↵i +
nX

j=0

�j = 1 (13)

Proof: Write (12) as follows,

y(k) = ↵1y(k � 1) + · · ·+ ↵ny(k � n) + �0u(k)

+�1u(k � 1) + · · ·+ �nu(k � n) (14)

Discretize (11) with �t, we obtain
8
>>>>>>>>>>><

>>>>>>>>>>>:

y(1) =
y(k + 1)� y(k)

�t

y(2) =
y(k + 2)� 2y(k + 1) + y(k)

�t2

y(3) =
y(k + 3)� 3y(k + 2) + 3y(k + 1)� y(k)

�t3
...

y(n) =
y(k + n)�

Pn�1
i=0 (�1)(i+1)y(k + i)Ci

n

�tn

(15)

Then Table 1 can be obtained. It is seen that each degree
in the numerator satisfies the Yang Hui’s triangle and the
sum of the coe�cient of numerator each degree equal zero.
Thus

Pn�1
i=0 (�1)(i+1)Ci

n = 1.

Table 1. Yang Hui’s triangle

degree The coe�cient

1 1 -1

2 1 -2 1

3 1 -3 3 -1

n 1 (�1)

n+1Cn�1
n (�1)

nCn�2
n · · ·� C1

n 1

Considering (11) and (15) it follows

y(k) = an�1(y(k � 1)�
n�2X

i=0

(�1)(i+1)Ci
n�1

y(k + i� n))�t+ an�2(y(k � 2)�
n�3X

i=0

(�1)(i+1)Ci
n�2y(k + i� n))�t2 + · · ·+

a0y(k � n)�tn +
n�1X

i=0

(�1)(i+1)Ci
n�1y(k
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+ i� n) + bn(u(k)�
n�1X

i=0

(�1)(i+1)Ci
n�1

u(k + i� n)) + · · ·+ b0u(k � n)�tn (16)

Since the sum of coe�cient in (16) equals the sum of
coe�cient in (14), and the sum of each degree coe�cient
is zero, therefore,

nX

i=1

↵i +
nX

j=0

�j = a0�t+ b0�t+
n�1X

i=0

(�1)(i+1)Ci
n�1 (17)

Then for �t ! 0 and a0, b0 in (11) being nonzero and
bounded,

nX

i=1

↵i +
nX

j=0

�j =
n�1X

i=0

(�1)(i+1)Ci
n�1 = 1 (18)

This completes the proof.

(18) can be written as follows,

D✓ = d,D = [11 · · · 11]2n+1, d = 1 (19)

✓ = [�↵̂1 � ↵̂2 · · ·� ↵̂n �̂0 �̂1 · · · �̂n]

.

3.2 Kalman filter with constraint

Theorem 2. The Kalman filter estimation of ✓ with
constraint in (19) is as follows,

✓̃t = ✓̂t �W�1DT (DW�1DT )�1(D✓̂t � d)

where ✓̂t is the Kalman estimation of ✓ without constraint
and W is a positive-definite weighting matrix.

Proof: The constrained Kalman filter is obtained by
directly projecting the unconstrained state estimate ✓̂t
onto the constraint surface. That is, we solve the problem:
min✓̃t

(✓̃t � ✓̂t)TW (✓̃t � ✓̂t), such that D✓̃t = d;

The conclusion can be readily made by using the La-
grangian method, the details of which are omitted here.

Remark 1: For W = I , the result of constrained esti-
mation is closer to the true state than the unconstrained
estimate at each time step. W = P�1

t results in the
minimum variance filter.

3.3 The algorithm

Suppose the system plant satisfies Theorem 1, the algo-
rithm for the Kalman filter-based with linear constraint
identification can be organized as follows,

✓̂t+1 = ✓̂t +Kt+1(zt � 'T
t ŷ) (20)

Kt+1 =
Pt't

qt + 'T
t Pt't

(21)

Pt+1 = Pt � �t
Pt't'

T
t Pt

qt + 'T
t Pt't

(22)

xt = 'T
t ✓̂t+1 (23)

✓̃t+1 = ✓̂t+1 �W�1DT (DW�1DT )�1(D✓̂t+1 � d) (24)

✓̂t = [�↵̂1 � ↵̂2 · · ·� ↵̂n �̂0 �̂1 · · · �̂n]

D = [11 · · · 11]2n+1, d = 1

4. CONVERGENCE ANALYSIS

The convergence analysis of the parameter estimation in
(7–10) and the output estimation in (6) had been well
studied in [2–4] and [10]. Here we summarize certain
related theorems.

Theorem 3. [10] For the system considered in (1–4) with
the following assumptions,

(A1) E(v(t)) = 0, E(v(t)2) = qt  1, a.s.

(A2) 9m0, d0, c0 2 R+ and t0 2 N+,

(A3) Gz = 1
↵(z) �

1
2 is strictly positive real.

the square parameter estimation error ||✓̂t�✓||2, produced
by the algorithm (7–10), satisfies:

(B1) ||✓̂t � ✓||2 = O[ (ln t)c

t ] ! 0, as..c > 1

(B2) ||✓̂t � ✓||2 = O[ (ln t(ln ln t)c)
t ] ! 0, as..c > 1

Theorem 4. Let W = P�1
t in (20–24), then Cov(✓ �

✓̃t)  Cov(✓� ✓̂t). Let W = I, then ||✓̃t� ✓||2  ||✓̂t� ✓||2.

Proof: Let W = P�1
t ,

then ✓̃t = ✓̂t � PtD
T (DPtD

T )�1(D✓̂t � d),

✓ � ✓̃t = (I � PtD
T (DPtD

T )�1D)(✓ � ✓̂t)

= (I � J)(✓ � ✓̂t) (25)

where J = PtD
T (DPtD

T )�1D.

Cov(✓ � ✓̃t) =E([(I � J)(✓ � ✓̂t)][(I � J)(✓ � ✓̂t)]
T )

= (I � J)Cov(✓ � ✓̂t)(I � J)T

= Pt � JPt � PtJ
T + JPtJ

T (26)

Since PtJ
T = JPtJ

T , then Cov(✓� ✓̃t) = Pt�JPt  Pt =
Cov(✓ � ✓̂t);

Let W = I, since D = [11 · · · 11]2n+1, then

J =DT (DDT )�1D

=
1

2n+ 1
ones(2n+ 1) (27)

In equal (25), we get

||✓̃t � ✓||2 = ||(I � J)(✓̂t � ✓)||2
 ||(I � J)||2||(✓̂t � ✓)||2
 ||✓̂t � ✓||2 (28)

For the eigenvalues of (I � J)T (I � J) are all less than 1.

Remark 2: since D = [11 · · · 1]2n+1, it thus holds that

8W = WT � 0, Cov(✓ � ✓̃t)  Cov(✓ � ✓̂t)

.
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Remark 3: Let W = I, we have ||✓̃t � ✓||2  ||✓̂t � ✓||2
only for D being full rank in (11).

Since ✓̃t of in the algorithm (20–24) is just by directly
projecting the unconstrained state estimate ✓̂t onto the
constraint surface, then with the same assumptions of
(A1), (A2) and (A3), ||✓̃t�✓||2 produced by the algorithm
(20–24), satisfies:

(C1) ||✓̃t � ✓||2 = O[ (ln t)c

t ] ! 0, as..c > 1.

(C2) ||✓̃t � ✓||2 = O[ (ln t(ln ln t)c)
t ] ! 0, as..c > 1.

Remark 4. With theorem 4, let W = I in the algorithm
(20–24), then ||✓̃t � ✓||2  ||✓̂t � ✓||2; let W = P�1

t , then
E(||✓̃t � ✓||2)  E(||✓̂t � ✓||2).
Theorem 5.[10] Suppose that the assumptions (A1)–
(A3) hold, and the input is bounded. Then there exists
a positive integer t0 such that for any t � t0, the output
estimation error zt � y(t) satisfies:

(C3)
Pt

i=t0
(zt � y(t))2 = O[(ln t)c+1], as c � 1.

(C4) 1
t

Pt
i=t0

(zt � y(t))2 = O[ (ln t)c+1

t ] ! 0, as c � 1.

Remark 5. (C1)–(C2) reveal that the parameter estima-
tion error of the algorithm (20)–(24) will converge to zero

at the speed of O[ (ln t)c

t ]. Theorem 5 reveals that the
output estimation error of (6) will converge to zero in

average sense at the speed of O[ (ln t)c+1

t ].

Fig. 2. the case 1 of ↵1 and ↵2

5. SIMULATION

Considered the plant P with the transfer function being
W (s) = 5s�8

s2+s+8 in the system (1). Then take �t = 0.05

will make Pz = 0.2332z�1�0.2527
1�1.949z�1+0.9512z�2 . Denote �par(%) =

||✓̃t�✓||2
||✓||2 ⇥ 100%.

Case 1: Take ⌧ = 0.8 and � = 0.7. In this case, about 20%
of the input data and 30% of the output data are missing.
The estimated parameters and corresponding estimation
errors are shown in Fig. 2–Fig. 4. They consider three
cases: one is the algorithm without constraint as in (7–
10), one is for W = I in algorithm (20–24), and the last is
for W = P�1

t in (20–24).

Fig. 3. the case 1 of �0 and �1

Fig. 4. the case 1 of �2 and �par(%)

Fig. 5. the case 2 of �par(%)

Case 2: Take ⌧ = 0.4 and � = 0.3. In this case, the
missing data scenario is much worse than that in case
1. Estimations of five parameters are shown in Table 2–
Table 4 with the errors in Fig. 5.
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Table 2. Intermediate parameter and errors
(Case 2 uncon)

t 10 100 500 1000 true

↵1 0 -1.7030 -1.7394 -1.8394 -1.9320

↵2 0 0.8574 0.8563 0.9123 0.9512

�0 0 0.0163 0.0042 0.0068 0

�1 0.1409 0.1642 0.2317 0.2393 0.2332

�2 0 -0.1578 -0.2240 -0.2260 -0.2527

�par(%) 99.5166 12.5801 9.9333 4.7794

Table 3. Intermediate parameter and errors
(Case 2 W = I)

t 10 100 500 1000 true

↵1 -0.2282 -1.7319 -1.7652 -1.8581 -1.9320

↵2 -0.2282 0.8285 0.8305 0.8938 0.9512

�0 -0.2282 -0.0452 -0.0215 -0.0118 0

�1 -0.0873 0.1353 0.2060 0.2207 0.2332

�2 -0.2282 -0.1867 -0.2498 -0.2447 -0.2527

�par(%) 96.7257 12.2251 9.5739 4.3783

Table 4. Intermediate parameter and
errors(W = P�1

t )

t 10 100 500 1000 true

↵1 -0.2837 -1.7202 -1.8401 -1.9377 -1.9320

↵2 -0.2837 0.8307 0.8760 0.9619 0.9512

�0 -0.2837 -0.0443 -0.0060 -0.0017 0

�1 0.1348 0.1259 0.2265 0.2321 0.2332

�2 -0.2837 -0.1922 -0.2565 -0.2580 -0.2527

�par(%) 95.4530 12.6757 5.3724 0.6128

Table 5. Intermediate parameter and errors
comparison

Case 1 (t) 10 100 500 1000

�par([10]) 90.9390 3.6225 1.6950 1.3603

�par(W = I) 86.0324 3.6154 1.6622 1.3381

�par(W = P�1
t ) 13.2035 3.3840 1.2758 0.8943

Case 2 (t) 10 100 500 1000

�par([10]) 99.5166 12.5801 9.9333 4.7794

�par(W = I) 96.7257 12.2251 9.5739 4.3783

�par(W = P�1
t ) 95.4530 12.6757 5.3724 0.6128

Remark 6. We can see that the algorithm (20)–(24) of
parameter estimation converges to the true value in the
Simulation results of Fig. 2–Fig. 4 and Table 2–Table 4.
What’s more, in the Table 5, it shows the algorithm
(20)–(24) improves the accuracy of parameter estimation
clearly, and taking W = I will make sure the result of
constrained estimation is closer to the true state than the
unconstrained estimate at each time step. However, taking
W = P�1

t in the algorithm (20)–(24) may not ensure that
the result is better than the unconstrained estimate at
each time step, but the mathematical expectation of the
result is better. These also proof the previous analysis
of Theorem 4. In conclusion, the results show that
algorithm (20–24) improve the accuracy of parameter
estimation in both cases. In particular, the improved
results are more evident with large amount of missing data
by using (20–24) with W = P�1

t .

6. CONCLUSIONS

A Kalman filter-based identification algorithm is proposed
for systems with randomly missing measurements. This

algorithm takes advantage of the linear constraints and
improves the accuracy of parameter estimation compared
with previous results. Simulation examples illustrate the
e↵ectiveness of the proposed approach. Further improve-
ments may be make by, e.g., decreasing the �t and using
the soft constraint D✓ ⇡ d instead of D✓ = d.
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